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INFRARED HYPERSPECTRAL FIELD MEASUREMENTS
OF SEASONAL CHANGE AT
WRIGHT-PATTERSON AIR FORCE BASE

1. INTRODUCTION

Current military strategy has shifted away from a global engagement against a super-power
enemy (the Soviet Union) to limted regional engagements against undetermined enemies.
Consequently the task of military surveillance has shifted from the detection of ICBMs and bomber
aircraft to critical mobile targets. Multispectral sensors offer the possibility of exploiting the spectral
differences between targets and backgrounds as a detection discriminant. The Naval Research
Laboratory (NRL) is a participant in a multiservice research program called the Joint Multispectral
Program (JMSP) involving the Navy, Air Force, Army, and the Advanced Research Project Agency
(ARPA). As part of this program, the JMSP has organized a number of field tests to obtain
hyperspectral measurements of targets of interest in natural backgrounds. This paper describes an
NRL-sponsored field-measurement effort, which took place at Wright Laboratory/Wright-Patterson
Air Force Base during the fall of 1993.

Previous JMSP field measurements [1-2] of forest and grass backgrounds in summer (from the
Redstone Arsenal tower operated by the U.S. Army Missile Command (MICOM)) have revealed high
band-to-band spectral correlations. This observation implies that target detection with a spectral
matched filter may be possible even if the single band contrast of the target to mean background is
small. The MICOM data provide an existence proof for the infrared multispectral target detection
problem.

A data collection effort was designed to investigate the diurnal and seasonal variations in
background characteristics and the relationship of these variations to target detection. A series of
measurements was made from the Building 620 tower at Wright Laboratory. Infrared hyperspectral
signatures of targets and backgrounds were measured by using an infrared Fourier transform
spectrometer (FTS) system. Data were collected under day and night conditions over a 9-week
period at roughly 1-week intervals. The targets measured were military (M35 truck and a flat panel
painted with a standard Army green coating) and reference (flat panels painted with coatings with
useful spectral characteristics). Section 2 gives a description of the FTS. Section 3 details the data
collection site and the experiments performed. Section 4 gives examples of the data and a
preliminary discussion of the implications of the data.

2. DATA COLLECTION INSTRUMENT

The specifications for the data collection FTS were generated by the Environmental Research
Institue of Michigan (ERIM) under the ARPA Multispectral Sensor Program (MSSP). The MSSP
Program was tasked to investigate the utility of multispectral infrared techniques (sensors and data
processing) for automated target detection. One of the results of the MSSP was a list of requirements
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for an instrument capable of making fixed-site multispectral IR measurements with the required
sensitivity to preserve the inherent spectral correlations of the natural backgrounds. These
requirements were used by ERIM to develop a FTS system for ARPA.

The FTS system is composed of five primary components: the infrared spectrometer, radiometric
calibration equipment, azimuth/elevation mount, control and data acquisition equipment, and
boresight video equipment. Figure 1 is a block diagram of the entire system. The operation of the
system is completely computer controlled so that the FTS can collect a large sequence of spectrally,
spatially, and to some extent, temporally resolved radiance data of a scene in a time period limited
almost completely by spectrometer sensitivity (integration time) requirements. The calibration and
boresight video equipment are integrated into the system operation to provide radiometric calibration
of the collected data and a visual record of each patch of target/background measured.

RS422 Calibration Source
Tape Drive g~ Amplifier
RS422 -~ (unspecified) Video Recorders with Time Stamp (EOI 2302B)
Control Comp (unspecified)
R§232 | G 2000 “ “ Calibration Source
1 016 MB § Amplifier |-
16 MB RAM VGA FOT 23028
©200 MB Hard Drive Monitor ( )
©5.25"3.5" Floppy Drives |- \ "
© ISA Bus (six16 bit and © 640 x 480 .
Y two 32 bt slots) > 16 Colors C*‘“‘(’:r::l‘::]i"r“’“
© 1 parallel, 2 serial ports (EOI T2450E)
Pan/Tilt Motor © Ethemet Interface
Controller ° 2 RS422/DSP Interfaces
(Aerotech - Keyboard . Calibration Source
UNIDEX 11) Video Monitors (Sony SSM-930) - Controller
“ “ A (EOI T2450E)
Analog RSI70 RS170 Equipment Rack
Pan/Tilt Drive Video C ™ o
Motors/Stages ideo Camera ermal Imager | — -
(Aerotech (Sony SSC-M354 (unspecified) | ¥ Cgog lzlacl;body
ibration Source
LTI35/ART312) (EOITI812D) | Analog
i Y R
| |
Wishbone Cassegrain | p .
i InSb Detector |- - X Collimator with ‘Cold’ Blackbody
- with Scanning | agp——mi . . - Telescope ﬂ - — Calibsats -
;- Video Diverter libration Source
: Preamp/ADC i Inferometer (5 mrad IFOV) | (EOIT1812D) | Analog
L]
L]
1 : A |
| E l
1 HgCdTe Detector| g 2 | Liquid Nitrogen |
with Subtractive |
| Preamp/ADC Source FTS Pedestal
i | and Yoke Assembly
——————————————————————————————— (ERIM)
Fourier Transform Spectrometer (Bomem MB-100)

Fig. 1 — Field spectrometer system

Infrared Spectrometer

The spectrometer configuration selected for the field measurements is a Bomem MB-100 Fourier
transform spectrometer. The basic interferometer design of the MB-100 consists of a KBr
beamsplitter with two corner cube retroreflectors mounted on a wishbone scan arm. As the arm pivots,
an optical path difference is introduced between the arms of the interferometer, thereby scanning out
an interferogram. The spectrum is produced by sampling with a reference NeHe laser and Fourier

transforming this interferogram.
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Infrared Hyperspectral Field Measurements of Seasonal Change 3

The optical design of the interferometer p.ovides two complementary inputs and outputs. In the
configuration used, one of the inputs is directed to the target of interest while the other is directed to a
stable cold (liquid nitrogen) reference. The outputs are directed to two separate detectors: an InSb
detector for the midwave infrared (MWIR (3-5 um)) spectral region and a HgCdTe detector for the

longwave infrared (LWIR (8-12 um)) region. Both of these detectors are located at image planes of
the pupil plane of the spectrometer through a common field aperture and secondary field apertures
in each set of output optics. These apertures can be adjusted to tradeoff MWIR/LWIR spatial
registration with radiometric sensitivity and stability.

The input optics of the FTS consist of a 10-in. Cassegrain telescope and a collimator assembly.
All focusing optics are reflective. With the field-limiting apertures open to their maximum diameter,
the individual field of view (IFOV) of the sensor is 5 mrad. A dichroic beamsplitter in the
collimating assembly provides an optical output to the charge coupled device (CCD) camera, which
provides boresight video through the common-field-limiting aperture.

The FTS operates in a free-run mode and provides digital interferogram data through two
separate interfaces (one for each detector). The interferogram is sampled in conjunction with an
internal NeHe laser reference beam that propagates through the interferometer. An RS422 interface
for each channel is used to allow remote data acquisition with the control computer. In addition, a
digital signal processor (DSP) board (one for each channel) allows real time Fourier transformation
of the acquired interferograms into complex spectra.

Radiometric Calibration Equipment

The spectrometer is calibrated in the field through a two-point complex calibration procedure
developed by Revercomb [3]. This is accomplished by alternatively making measurements of two
extended-area blackbody reference sources at different, known temperatures prior to each data
collection sequence. In addition, such measurements can be repeated directly prior to and after each
collection sequence to provide temporal calibration of linear FTS drift.

The calibration sources exhibit a 12 in. X 12 in. blackbody surface controlled by a large (10 X
10) array of matched thermoelectric modules with closed loop compensation in reference to a
platinum-resistance thermometer on the emitting surface. The calibration sources have an accuracy
of 0.03 C.

Azimuth/Elevation Mount

In order to acquire the correlation and contrast data of interest, it is necessary that the
spectrometer be mounted on a pedestal with provisions for rapidly steering (under computer control)
the line-of-sight to a sequence of predetermined locations. The configuration for the
azimuth/elevation mount is a yoke assembly consisting of two motorized rotary stages mounted on a
large tripod. The rotary stages provide extremely precise positioning via high-quality angular
contact bearings and a precision oil-filled worm drive. Each of the stages is driven by a pulse-width
modulated dc servo motor equipped with a rotary encoder to provide closed-loop position feedback
and velocity stabilization. Motor control occurs via a digital controller, which allows point-to-point
pan/tilt through either front-panel programming, a proportional speed joystick, or an RS232
interface. The yoke assembly was designed with adequate rigidity for 1 arc min stability.
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Control and Data Acquisition System

The control and data acquisition system is field portable and capable of interfacing with the FTS
motor controllers and all possible data analysis platforms. A PC-based system was required for FTS
compatibility. Due to the large amount of data collected (on the order of 2 MB per experiment), it is
essential that the system provide a rapid data acquisition capability, sufficient RAM and hard disk
storage capacity, and a tape backup capability. The basic system is a PC with a 80486DX processor
and 16 MB RAM equipped with several ISA boards to provide the FTS, motor controller, and
network interfaces. '

Boresight Video Equipment

Boresight video is required to set up the spatial scan sequence for an FTS data collection
experiment and, during daytime hours, monitor and record a visual rendering of the measured target
and background patches. A dichroic video diverter is included in the FTS collimator that allows a
video camera to monitor the scene through the FTS telescope and front aperture. The mechanical
interface is a C-mount. The collimator assembly contains the imaging optics.

3. COLLECTION SITE, TARGET, AND EXPERIMENT DESCRIPTION

The data collections were made from Building 620 at Wright Laboratory. This building has a
13-story tower that overlooks a wooded area. The tower has three floors of lab space at the top.
Figure 2 shows the tower and surrounding area. The laboratory used was located on the 11 floor,
approximately 150-ft above ground level. Figure 3 shows the FTS pointing out of the lab window.
Figure 4 shows the FTS during calibration.

The lab faces due west, with the view opening out onto Loop Road, a small grassy area divided by
a gravel road and a stand of deciduous trees approximately 784 ft away. The gravel road leads to a
clearing within the trees. Figure 5 shows the test sight. Area B of the Air Force base can be seen in
the background. Figure 6 is a ground-level view of the test sight. The orange trailer on the left
houses a meteorological station. The various sensors can be seen spread around it. In the center are
four reference panels and a radar-scattering camouflage net. The panels are coated with (from left to
right) flame-sprayed aluminum, Krylon Ultraflat Black, and CARC 383 Green. The panel on the
right side of the net is polished aluminum that has been allowed to oxidize. A more detailed
description of the panels and their reflectance properties may be found in Ref 4. The M-35 truck is
partially obscured by a tree on the right side of the picture.

The meteorological station support was provided by E-OIR, Inc. The station measures total
precipitation, air temperature, dew point, visible (0.3 - 3 pm) and IR (3 - 50 pm) down-welling flux,
air pressure, wind speed and direction, visibility, and ground temperature. The air temperature,
dew point, and visibility sensors were all approximately 6 ft off the ground. The pyrometers,
anemometer, and wind vane were approximately 9 ft off the ground. Data were collected
continuously and averaged every 5 mins. Air temperature, relative humidity, pressure, wind speed,
and wind direction were also monitored with a weather station provided by NRL. The anemometer
and weather vane proved to be less sensitive than those operated by E-OIR, which required wind
speeds greater than 3 mph before responding. These were located at a lower height of
approximately 3 ft. Data were sampled once per minute with this station, without averaging.
Additional ground truth was provided by FLIR, bore-sighted video and 35-mm camera imagery,
regional meteorological data from the Base control tower, and thermistor temperature data from the

panels.




Infrared Hyperspectral Field Measurements of Seasonal Change

Fig. 3 — The spectrometer collecting data from the tower laboratory
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Fig. 5 — The test site as seen from the tower laboratory, including test
pancls and the M-35 truck
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Fig. 6 — The test site as seen from ground level

Figure 7 is a map of the test site drawn to scale showing the relative placement of the panels and
meteorological station sensors. The truck was parked approximately 50 ft to the north of the
specular panel. The panels were tilted approximately 15° from vertical, which is the nominal
spectrometer depression angle. The azimuthal angles of the diffuse and painted panels were adjusted
so that the panels were approximately perpendicular to the spectrometer's line-of-sight. These angles
were measured to within +1° relative to a line running north-south and are indicated on the map. The
specular panel was pointed well away from the tower, the base of which is approximately 3° from due
east so that it would reflect the sky back to the instrument and not an image of the tower. While the
sun passed near the portion of the sky reflected to the spectrometer, the sun never actually came
within the field of view (FOV).

The radar-scattering camouflage net was a diamond-shaped section of the Navy Stock Number
1080-00-103-1246 woodland camouflage screen kit. The point of the diamond was draped over a
metal rod fastened to the tops of the specular and CARC panels. The front of the net was staked so
that it hung nearly parallel to the panels. The remaining portion of the net was pulled back and
stacked so that the instrument viewed a single layer of net. The net has two sides: spring-summer,
which has various shades of green garnish, and fall-winter, which has various shades of green and
brown garnish. The fall-winter side was deployed for all but one of the data collections.

Twelve different experiments were designed and repeated throughout the course of the
collections. Each experiment had a different sample location or number of coadded scans. The
different experiments are identified by a letter designation. Table 1 summarizes the experiment
parameters. Subsets of the 12 experiments were combined into sequences. A typical day consisted
of running a particular sequence repeatedly throughout the day, with each repetition given a
sequence number. Each data set was given a unique name that contains the type of experiment, the
date, and the sequence number during the day. For example, a patch on the left side of the tree
canopy was designated as experiment "A." The data collected during the first sequence of the day on
September 30 was labeled "A09301." The data collected at this same location during the second
sequence were labeled "A09302," etc.
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Table 1 — List of Experimental Parameters

Sample Sample Spacin
Designation Subject Geometry P© SPACINE | 4 Co-adds Purpose
(IFOVs)
(VxH)
A tree canopy 6x6 2 25 spectral correlation
on left
B tree canopy 6x6 2 25 spectral correlation
on right
C grass 3x10 2 25 spectral correlation
D trees in 1x72 0.5 15 PSD
center correlation length
test panels/net 1x5 1.5 15
E M-35 truck 9 pts. 1 15 spectral contrast
trees 1x9 2 15
grass 1x9 2 15
F miscellaneous - - 15 spectral contrast
trees in center 1x72 0.5 5 PSD
correlation length
H test panels/net 1x5 1.5 15 spectral contrast
M-35 truck 0 pts. - 15
I trees in center 1x72 1 5 PSD
correlation length
J asphalt road - - 15 spectral contrast
K grass, leaves - - 15 spectral contrast
L sky 5x1 8.7 15 sky radiance
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Figure 8 shows the canopy and grass experiment locations and Figure 9 shows the locations on
the truck that were measured. Figure 10 shows the net deployment.

Experiment F consisted of measurements of concrete and asphalt runways and several buildings,
including the Air Force Museum hangers. Figure 11 is a photo of these targets, with the spectrometer

FOV overlain.

A typical experiment consisted of five steps. First, the radiances of 20° C and 45° C blackbodies
were measured. Second, another set of the blackbody radiances were measured and calibrated with
the first set. Third, data were collected on targets and backgrounds of interest. These measurements
typically took 20 to 30 measurements to collect. The instrument was found to drift significantly over
time scales such as these [3]. Fourth, another set of blackbody radiances was collected and calibrated
using the first set. Fifth, the second and third sets of blackbody radiances were used to perform a
temporal calibration of the data that removes the linear component of the instrument drift. The data

collected at each step were saved on disk.

4. DATA DESCRIPTION

In all, 243 experiments were performed. Table 2 summarizes the results. These measurements
include observations of the same target and background over varying seasonal and environmental
conditions. It is beyond the scope of this paper to give a thorough treatment of the data and the
inferences that could be derived from analysis. However some examples are given that illustrate
diurnal and seasonal variations in the observed data. A more complete analysis will be reserved for a

future paper.

In general, the tree and grass backgrounds exhibit high band-to-band spectral correlations,
although not as high as the correlations observed at MICOM [1]. Figure 12 is an example of the high
spectral correlation. This sequence of measurements was taken of the B tree background on October
7 The measurements occurred between 8:40 a.m. and 8:30 p.m. For any individual experiment the

observed spectral correlation between 9 and 11 pm is at least two 9's (i.e., p > 0.99). High spectral
correlations are driven by large thermal contrasts. Therefore the highest correlation is observed at
11:26 a.m. when solar loading is a maximum. Because of the large temperature variation during the
day, the effective correlation (the correlation computed assuming all of the data points were
independent and measured simultaneously) of the entire sequence is four 9's. It is this high spectral
correlation that allows the use of matched spectral filters to detect low contrast targets.

Figures 13 and 14 show two examples of low contrast targets. The first example (Fig. 13) is an
observation of the CARC panel and tree canopy at 3:00 p.m. on October 22. At this time of day, the
Sun has descended far enough so that most of the vegetation and the panels are in shadows. Without
solar loading, the panels cool off faster than vegetation. The 3:00 p.m. data on October 22 caught
the panel at the thermal crossover point (the point of near zero contrast between panel and
background, which marks the transition from positive contrast in midafternoon and negative contrast
at night). At thermal crossover, the observed radiance from the target at any one wavelength falls
within the variation in observed background radiances. Consequently the mean single-color contrast
between target and background is small. The contrast between the CARC panel and the tree canopy
at either 8.5 or 10 um is essentially zero (Fig. 13). Therefore a single color sensor using either 8.5 or
10 pm would fail to detect the CARC panel in the tree background. On the other hand, the spectral

correlation between 8.5 and 10 pm for this background is high (0.997). Because of the high
correlation in the background, it is possible to draw a decision boundary allowing the detection of the
low contrast target.
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Fig. 9 — M-35 truck sample locations
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Fig. 10 —— Radar-scattering-net deployment

Fig. 11 — The nuclear reactor, hangers, and concrete runway behind the test
site showing the approximate sample locations for Experiment F
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Fig. 12 — Scatter plot of the radiance at two wavelengths of a set of pixels
containing tree canopy (Experiment B) at various times on October 7.
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Fig. 13 — Low contrast example of the CARC panel in a tree background
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Fig. 14 — Low contrast example of the M-35 truck in a tree background

Figure 14 shows a second example. These measurements were of the M-35 truck and tree
canopy at 4:00 p.m. October 22 (roughly the same time as the first example). The truck was an
extended target allowing many pixels. There is some variability in the target pixel values due
primarily to the differences in material in the pixels (painted metal, aluminum, glass, rubber, and
‘canvas) and the geometric orientation of the truck parts. The contrast between three of the target
pixels and the background are low. The two-color separation (using 9 and 11 pm) is large enough to
allow detection. Notice that one target pixel lies within the background distribution even in two
colors (the circle surrounded by pluses in Fig. 14). This pixel fell on the front windshield of the
truck, which reflects the surrounding trees. Two-color detection based on this pixel alone would not

be possible.

These two examples indicate that background spectral correlation can be an important property
for target detection. This metric is important for many detection algorithms; for example, spectral-
matched filtering. The stability of this parameter over time (diurnally as well as seasonally) is a key
issue in the design of operational sensors that may rely on high spectral correlation for target
detection. A primary motivation for measuring the same background pixels over time was to
determine the variation of the spectral correlation. Spectral correlations were computed for six
wavelength pairs for all of the A, B, and C experiments. The wavelength pairs (4.1 and 8.2 pm, 4.7
and 11 pum, 8.1 and 10.1 pm, 8.5 and 11 pm, 3.4 and 4.1 pum, 4.1 and 4.7 um) were identified in the
ARPA MSSP program [4] as candidate pairs for a dual-band sensor. Figures 15, 16, and 17 show
plots of the correlations for the A, B, and C experiments, respectively.  Correlations are usually
highest near noon, with significant drop-off in the early morning and late afternoon. The spectral
correlation is usually higher early in the year and lower later in the year. This may be caused as the
leaves drop off the trees: the pixels then become composites of constituents at different ranges. The
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Fig. 15 — Diurnal and seasonal variation of spectral correlation in Experiment A for six waveband pairs
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Fig. 16 — Diurnal and seasonal variation of spectral correlation in Experiment B for six waveband pairs
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Fig. 17 — Diurnal and seasonal variation of spectral correlation in Experiment C for six waveband pairs
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highest correlation is always observed for the grass (C) background. The best band pair (for
correlation) was 8.5 and 11 pm. The correlations for this band pair for the three backgrounds as Fig.
18 shows. The correlations in A are consistently the worst and C the best. Background A was of a
patch of trees that began to change color earlier than B. The exact relation between observed
correlation and parameters (such as plant emissivity) is a subject for future investigation.
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(c)

Seasonal changes in the tree canopy were apparent in the photographs, IR imagery, and IR
spectra. Figure 19 contains panoramic photos taken every week from September 24 to November
29. Note that areas covered by Experiments A and B change color and lose their leaves at different
times. Figure 20 shows FLIR images taken at mid-morning on three days. The IR clutter increases as
the leaves senesce and drop due to increasing variability in solar absorption and loss of the leaves'
temperature-regulating capability. The ground in front of the tree has a very high radiance when
compared to the canopy in the late fall. This is an area in which dead leaves are gathered.
Apparently the high radiance is due to the fact that, without evaporating moisture or other biological
regulation processes, the Sun heats the leaves to relatively high temperatures. The IR spectra also
show seasonal variations. Figure 21 shows spatial plots of Experiment G at 8.5 pm on 6 days. These
plots show large variations in spatial structure over time. The exact relationship between these
variations and changes in emissivity or solar illumination has not yet been determined.
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Fig. 19 (Continued) — Panoramic site photos from 30 September to 22 October 1993
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Fig. 20 — FLIR images of the test site showing the increasing clutter as the vegetation loses its leaves
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5. CONCLUSIONS

IR spectra were collected of targets and tree and grass backgrounds during 9 days over a 2-
month period. High spectral correlations in backgrounds were observed during this period with the
highest correlation observed near mid-day, at the beginning of the 2-month period. There is
evidence of seasonal variations in correlation and observed radiance. The phenomenological cause
for such variations is the subject for future research on this data.
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